Rolling window selection for out-of-sample forecasting with time-varying parameters
نویسندگان
چکیده
منابع مشابه
Forecasting model selection through out-of-sample rolling horizon weighted errors
Demand Forecasting is an essential process for any firm whether it is a supplier, manufacturer or retailer. A large number of research works about time series forecast techniques exists in the literature, and there are many time series forecasting tools. In many cases, however, selecting the best time series forecasting model for each time series to be dealt with is still a complex problem. In ...
متن کاملModeling and Forecasting Iranian Inflation with Time Varying BVAR Models
This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...
متن کاملForecasting with time-varying vector autoregressive models
The purpose of this paper is to propose a time-varying vector autoregressive model (TV-VAR) for forecasting multivariate time series. The model is casted into a state-space form that allows flexible description and analysis. The volatility covariance matrix of the time series is modelled via inverted Wishart and singular multivariate beta distributions allowing a fully conjugate Bayesian infere...
متن کاملmodeling and forecasting iranian inflation with time varying bvar models
this paper investigates the forecasting performance of different time-varying bvar models for iranian inflation. forecast accuracy of a bvar model with litterman’s prior compared with a time-varying bvar model (a version introduced by doan et al., 1984); and a modified time-varying bvar model, where the autoregressive coefficients are held constant and only the deterministic components are allo...
متن کاملNonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)
Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2017
ISSN: 0304-4076
DOI: 10.1016/j.jeconom.2016.03.006